Mutations in the Exocyst Component Sec5 Disrupt Neuronal Membrane Traffic, but Neurotransmitter Release Persists

نویسندگان

  • Mala Murthy
  • Dan Garza
  • Richard H. Scheller
  • Thomas L. Schwarz
چکیده

The exocyst (Sec6/8) complex is necessary for secretion in yeast and has been postulated to establish polarity by directing vesicle fusion to specific sites along the plasma membrane. The complex may also function in the nervous system, but its precise role is unknown. We have investigated exocyst function in Drosophila with mutations in one member of the complex, sec5. Null alleles die as growth-arrested larvae, whose neuromuscular junctions fail to expand. In culture, neurite outgrowth fails in sec5 mutants once maternal Sec5 is exhausted. Using a trafficking assay, we found impairments in the membrane addition of newly synthesized proteins. In contrast, synaptic vesicle fusion was not impaired. Thus, Sec5 differentiates between two forms of vesicle trafficking: trafficking for cell growth and membrane protein insertion depend on sec5, whereas transmitter secretion does not. In this regard, sec5 differs from the homologs of other yeast exocytosis genes that are required for both neuronal trafficking pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The exocyst component Sec5 is present on endocytic vesicles in the oocyte of Drosophila melanogaster

The exocyst is an octameric complex required for polarized secretion. Some components of the exocyst are found on the plasma membrane, whereas others are recruited to Golgi membranes, suggesting that exocyst assembly tethers vesicles to their site of fusion. We have found that in Drosophila melanogaster oocytes the majority of the exocyst component Sec5 is unexpectedly present in clathrin-coate...

متن کامل

Essential function of Drosophila Sec6 in apical exocytosis of epithelial photoreceptor cells

Polarized exocytosis plays a major role in development and cell differentiation but the mechanisms that target exocytosis to specific membrane domains in animal cells are still poorly understood. We characterized Drosophila Sec6, a component of the exocyst complex that is believed to tether secretory vesicles to specific plasma membrane sites. sec6 mutations cause cell lethality and disrupt pla...

متن کامل

The exocyst component Sec5 is required for membrane traffic and polarity in the Drosophila ovary.

The directed traffic of membrane proteins to the cell surface is crucial for many developmental events. We describe the role of Sec5, a member of the exocyst complex, in directed membrane traffic in the Drosophila oocyte. During oogenesis, we find that Sec5 localization undergoes dynamic changes, correlating with the sites at which it is required for the traffic of membrane proteins. Germline c...

متن کامل

Mutations in Drosophila sec15 Reveal a Function in Neuronal Targeting for a Subset of Exocyst Components

The exocyst is a complex of proteins originally identified in yeast that has been implicated in polarized secretion. Components of the exocyst have been implicated in neurite outgrowth, cell polarity, and cell viability. We have isolated an exocyst component, sec15, in a screen for genes required for synaptic specificity. Loss of sec15 causes a targeting defect of photoreceptors that coincides ...

متن کامل

Ral mediates activity-dependent growth of postsynaptic membranes via recruitment of the exocyst.

Remodelling neuronal connections by synaptic activity requires membrane trafficking. We present evidence for a signalling pathway by which synaptic activity and its consequent Ca(2+) influx activate the small GTPase Ral and thereby recruit exocyst proteins to postsynaptic zones. In accord with the ability of the exocyst to direct delivery of post-Golgi vesicles, constitutively active Ral expres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2003